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Abstract-It is known that the physical quantities form, in algebraic sense, anintinitefreeabeliangroup. 
It is shown in this paper, that the dimensionless quantities of a given system form a finite free abelian 
group. It follows from this statement, that any element of the group may be obtained in the form of 
a whole exponent power product. The members of this power products are called basic elements. A 
new logical systematization of the dimensionless quantities by the group theory was possible. 

The main results of this systematization are as follows: 

1. The number of basic elements is identical with the degrees of freedom. 

2. Any arbitrary proceeding in determination of the basic dimensionless quantities is eliminated, 
as the determination of the question, how many basic criteria there are and which may be these, 
is made according to exact instructions. 

3. It is possible to explain the relations among the dimensionless quantities, namely it can be 
determined, that how many dimensionless quantities are included into the relation and which are 
these quantities. 

Examples are given in the determination of the criteria of scaling-up. The basic equations in chemical 
engineering are discussed. 

h 
a 

PC,’ 

Cf. 

CP- 
d 

.II: 

F, 
AH. 
P, 
P. 

r, 

V(/ 
r' --_ -- ) 

('j 

T, 
t, 
1'3 

nkl 1 4 8 

NOMENCLATURE 

heat diffusivity (m2/h); 

molar concentration of component i 
(mol/ms) ; 
specific heat (kcal/kg degree); 
characteristic length (or diameter) 
(m) ; 
diffusivity (m2/h); 
friction factor ; 
degree of freedom; 
molar heat of reaction (kcal/mol); 
pressure (kg/m s2) ; 
number of basic criteria, equations 
(5) and (6); 
rate of reaction (mol/m3 h); 

exponent, equations (4), (5), (I I) 
and (13); 
heat-transfer coefficient (kcal/m”h 
degree) ; 
exponent, equations (12) and ( I 3) : 
component, (mass-transfer) co- 
efficient (m/h); 
momentum transfer coefficient 

_.f'Pl' 
2 - (k/m2 l-4; 

rate of reaction referred to unit 
time (l/h); 

thermal conductivity (kcal/m h 
degree); 
stoichiometric coefficient; 
kinematic viscosity (m2/h); 
dynamic viscosity (kg/m h) ; 
density (kg/m3); 
interfacial area per unit volume 
(ma/m”). 

temperature (grade); THE use of dimensionless quantities is widespread 
time (h) ; in the engineering practice. Chemical engineering 
linear flow velocity (m/h); forms no exception. This is due on the one hand 
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to the fact that often rather intricate relations 
between several variables can simply be charac- 
terized numerically by a dimensionless quantity. 
Beyond this point of view, which is actually one 
of convenience only, the formation of dimension- 
less quantities, i.e. of the ratio of quantities with 
identical dimensions, essentially means measure- 
ment. It is known that ordinary measuring is a 
comparison : the quantity to be measured is 
compared with a conventional (standard) quan- 
tity, i.e. with the unit. When a dimensionless 
quantity is formed, the quantity to be measured 
is compared with a characteristic quantity of the 
system, having the same dimension, instead of 
comparing it with a conventional unit. The 
formation of dimensionless quantities is there- 
fore called the introduction of eigen measure. 
For example, every cylindrical body is character- 
ized by its length (I) referred to its diameter 
(n) as a unit, i.e. 

1 
- = E. 
d 

Another well known example is the Reynolds 
number 

(lb) 

which represents the ratio of convective and 
conductive momentum streams. As it is known, 
it was essential to recognize that the transition 
from laminar into turbulent flow characteristics 
does not depend on the absolute values of the 
convection or conduction momentum streams 
themselves, but on their ratio, i.e. on the Re 
number. Thus the dimensionless quantity is a 
scale number. 

The formal systematization of dimensionless 
quantities is done on the basis of their formation. 
According to this, there are: 

1. Simple or simplex dimensionless quantities 
(la). 

2. Compound or complex dimensionless 
quantities (1 b). 

3. Dimensionless quantities of efficiency 
character. 

The aim of this paper is to show the possibility 
of another systematization of dimensionless 

quantities, on the basis of the relations among 
the dimensionless quantities, furnishing there- 
fore information on the correlations between 
them. This systematization is done by means of 
the algebraic group theory. 

It has been proved by Fleischmann [I] that 
the physical quantities form an infinite, free 
abelian group. This means that q the criteria 
required from a group as an algebraic structure 
are fulfilled by the physical quantities. Only 
three of these criteria will be dealt with here, 
which are absolutely necessary for the under- 
standing of the following. 

I. A group is a (non-empty) set, S, among the 
elements of which there exists a relation (usually 
written as a multiplication), and this orders 
unambiguously to the element pair A, B of set S, 
an element C of the set: 

AB = C (2) 

C is called the product of A and B. 
II. The multiplication conceived in this way 

is commutative in the case of physical quantities. 
Therefore 

AB =: BA. (3) 

The groups which fultil the criterion (3) are 
called commutative or abelian groups. 

III. It can be shown [2] that any element of the 
free abelian group may be obtained as a product 
of a finite number of whole exponent generators : 

Among the generators, there are preferred 
sets which contain the maximum number of 
independent elements, and consist, at the same 
time, of the minimum number of generators. These 
specific sets of generators are called bases. Out 
of the elements Ci in relation (4), p elements are 
selected, where p < q, and marking these selected 
elements by &, any element of the group may be 
obtained by these in the form of a power product, 
where the exponent is a positive or negative 
whole number, or zero: 

X = BTc II;2 . . . B;p = i? Bi”,. (5) 
i=l 
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The word “free” in the term free abelian group 
means that the generators are independent of 
each other, and no equation-restriction- 
exists between these elements. It is a logical 
consequence of this and has also been proved in 
detail [3] that the nurrrber of basic components, 
p, is identical with the degree of freedom, F, i.e. 

p ;; F = N -- ,u (6) 

where N is the number of all the elements, and 
M the number of equations (restrictions). 

The term “degree of freedom” is used in the 
sense as first conceived by Gilliland and Reed [4]. 
Thus it represents the number of those inde- 
pendent variables which can be “selected freely” 
by the engineers, and the system will be defined 
unambiguously by fixing their values. The re- 
maining variables, the number of which is M, 
are defined by M relations valid in the system. 
It will be seen subsequently, that the group theo- 
retical treatment presented here does not only 
furnish the number of the independent variables 
to be selected freely by means of the identity 
p z F, but it can also be shown by this treatment 
which of the system variables may be chosen 
freely. 

If in the infinite sphere of physical quantities 
we restrict our investigations to a system in 
physicochemical sense, i.e. to a set of elements 
limited by a wall ofjnite dimensions, the number 
of the elements (which in *our case are physical 
quantities) will also be a finite number (N). 

Thus the definition of the system is as follows: 
A system, has finite dimensions; is limited by a 
wall of definite properties; and (just in conse- 
quence of the first two restrictions) is a group 
which can be completely described by a finite 
number of quantities (N elements)zlt follows 
from the above that any system may be con- 
sidered as a subgroup of the infinite free abelian 
group representing all the physical quantities. 
This can be understood as follows: 

Should G be the infinite free abelian group 
containing all the physical quantities as elements. 
It can be seen directly that N is a part set of G. 
Apart from this, the following requirement is 
also met by N. 

The product of any two elements of N is 
included into N. This means. that the set is 

closed as regards the multiplication operation. 
N being a group itself, it also has a basis. That 
abelian group has a basis is a theorem which 
can be proved [5]. 

The dimensionless quantities form a jinite, 
free nbelian group, since they are obtained as 
ratios of physical quantities, i.e. according to the 
Axiom I of group theory as a result of multi- 
plication, and because their number is finite as 
related to a system. 

This subgroup also must have a basis, and as 
shown by equation (6), the number of its basic 
elements gives the degree of freedom of the 
dimensionless system. Of course the basic 
elements are also dimensionless in this case. Up 
to now the dimensionless basis has been called 
a “complete set” in the theory of similitude [6]. 
It is new, however, in this context that the 
number of the elements forming the “complete 
set” represents also a degree of freedom [see 
equation (6)]. It follows from the conception of 
the degree of freedom [3] that if out of the total 
number, N, of the variables of the system those 
forming a basis are selected, the data required 
and sufficient for the unambiguous description 
of the dimensionless system are determined at 
the same time. These data are called basic 
quantities and in the special case of dimension- 
less quantities basic criteria. The practical 
importance of the problem rests on this state- 
ment. All the basic criteria together also define 
a system, which is called the basic system. This 
is a fictitions system, since it does not exist in 
the physical reality, but the actually existing 
system may be expressed by this reduced 
fictitious system. Thus the number of the vari- 
ables describing the system has been diminished. 
This is also of great importance in engineering 
practice. 

In addition to this, when controlling a system, 
or at scaling up, it is not the same how many 
parameters are to be considered and which of 
these parameters will be, but according to the 
above, the parameters should be the basic 
criteria. 

To illustrate the above arguments, applications 
for the three characteristic quantities occurring 
in chemical engineering science will be given. 
These quantities are: the heat, the momentum 
and the masses of chemical components, the 
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convection transfer 
conduction convection 

source 
convectron 

Component pe’ = “D” 

Heat 

Momentum f’ _ = r 
2 PV 

AHrd 
Da11 = -~ 

pc,ATc 

number of which is k. In the case of stationary 
flow. the following three equations hold good 

div [pa] - div [D grad cr] + UflAci 

f qr = 0, i = 1, 2, . . ., k (7) 

div [PC, TV] - div [h grad T] + waAT 

+ vcrAH z- 0 (8) 

Div (pvsv} - Div (7 Grad v} -+ wyAv 

f grad p = 0. (9) 

Among them the first two equations are the 
so called enlarged Damkohler [7] equations,* 
whereas the third one is a somewhat modified 
form of the Navier-Stokes equation [8], well 
known in fluid mechanics. In every equation 
the first term means convection, the second 
conduction (diffusion), the third transfer between 
two phases and the fourth a source (respectively 
a sink, with a negative sign). The above equations 
are of course homogeneous dimensionally, i.e. 
the dimension of each term is the same, and it has 
- 

* It is called enlarged, since the third members (upAct) 
and (wAT’) shown here and covering transfer processes 
between phases, are not considered in the original equa- 
tion by Damkohler. In connection with equation (9), it 
must be emphasized that the sign Div with a capital letter 
does not represent a simple divergency, because the 
quantities in the figure bracket are. (secondary) tensors: 
the dyadic product of the convective momentum flux 
pv and u vectors, denoted by a small circle. Similarly, in 
the second term the capital letter “G” expresses the fact 
that it is not the gradient-vector of a scalar quantity, 
but the gradient-tensor of a vector field (in our case the 
velocity field). 

the same unit of measurement (quantity/m”h), 
within one unit system. If not the values of the 
individual terms, but their values related to any 
selected term are considered, dimensionless 
quantities will be obtained. Let us write these 
quantities, e.g. dividing them by a convective 
term (see Table 1). In the first case its reciprocal 
is taken. 

Note : the symbols of the individual quantities 
are shown in the table at the end of this paper. 
It is to be mentioned also, that in the case of 
momentum flow several dimensionless quantities 
belong to the last column, since E means force 
in a general sense. With E = Apd2, a compressive 
force, we get Eu (the Euler number), while with 
E = pg#, gravitational force, Fa (the Fanning 
number) is obtained, etc. 

In this way, 3 x 3 = 9 independent di- 
mensionless quantities are obtained for the three 
streams. Other dimensionless quantities may 
of course be formed from the four members of 
the equation, but the number of independent 
quantities forming the basis always equals 
nine. For example, in the 2nd column of Table 2, 
insteadof (transfer/convection) the dimensionless 
quantities iVu’, iVu, and A* (unnamed) may be 
formed, corresponding to the ratio (transfer/ 
conduction). 

With respect to the latter bas’is, Table 2 shows 
the system according to van Krevelen [9], 
including all the dimensionless quantities de- 
rivable from equations (7), (8) and (9). It can be 
seen that his systematization was effected by 
group theory, since by means of the basic 
criteria shown in the frame, all the other ele- 
ments of the group may be obtained according 
to equation (5), viz. : 
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Tabk 2. Systematization of dimensionless numbers according to van Krevelen 
__ . . 

convection transfer 
conduction conduction 

(1) (2) 

source 
convection 

(3) 

_ _ --.---~--- 

transfer source source. 
convection conduction transfer 

(4) (5) (6) (7) 

Corn- 
ponent 

Da1 = cd 
V 

SC = PE_ St’ = s 
Re V 

Da11 = ‘g 

Heat 
AHrd 

Dal11 = ~ 
pc, ATv 

Pr = ‘2 
Re 

st = & DaIV = !!!?$ D* = I!$ 

St’ = Nu’ Per-’ 

St = NuPe-’ 

f’ = A* Re-’ 
2 

Dal1 = Pe’ Da1 

DaIV = Pe Da111 

B* = Re We-’ 

C* = Pe’ (A%‘)-’ DaJ 

D” = Pe Nrl Da111 

E* = Re (A*)-l We-l. (10) 

It is a great advantage of the systematization 
by group theory that the determination of the 
question, how many basic criteria there are and 
which: may these be, is made according to exact 
instructions. As a matter of fact, one group may 
have several bases. In a physical sense it means 
that the variables of a system may be obtained 
by different basic criteria having always the same 
number. In other words, the basic criteria are 
interchangeable. In the course of the calcula- 
tions, such changes have already been carried 
out, but not always in the right way, as will be 
shown in the following. The right answer is 
given by the group theory and any arbitrary 
proceedings are eliminated by it. 

According to relation (5), an arbitrary & 
element of the system is now written in the form 
of a power product, providing the whole ex- 
ponents with double subscripts, where the first 
subscript denotes the basis, and the second 
subscript is the subscript of the series: 

& = B;OI B”a 
2 . . . Bpo*u. (111 

The theorem applying to the selection of the 
basic elements is: 

Should (B,, B, . . . B,) be the basic variables 
(basic elements) of the system, other (&, 1,. . . 
BP) elements, the number of which is equally p, 
will be basic variables only in the case if any 
basic element Bf of the previous basic system 
may be obtained from them with different whole 
exponents, making 

B j = &I Bb,z 
2 **I Bpb”. (12) 

The necessary and sufficient condition for 
this is, that the determinant formed from both 
exponent systems should fulfil the requirement 
of the linear independence, i.e. its value should 
amount to & 1. 

Det)aik( =DetIbjkI =fl. (13) 

Therefore the elements of a basic system may 
be exchanged for other elements only then, if 
the new system thus obtained fulfils the restric- 
tive equation (13). This means that the basic 
systems are equivalent among them. Any element 
of the group must be obtainable by any basic 
system. 

To illustrate this theorem, it will be shown that 
the change effected in the second column of 
the basis of Table 1 and Table 2 is permitted. 
The determinant formed from the exponents of 
the two bases may be obtained by employing the 
first three correlations of (lo), in accordance 
with the restrictive equation (13) covering the 
condition of linear independence. 
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Pe’ PC Rc- Nu’ Nil A* DUI Dalll We ’ 
Pe’ 1 0 0 0 0 0 0 0 0 
Pe 0 I 0 0 0 0 0 0 0 
Re 0 0 I 0 0 0 0 0 0 
St’ I 0 0 I 0 0 0 0 0 

;2 0 0 -I 0 0 1 0 0 0 I 0 I 0 0 0 0 0 0 
DUI 0 0 0 0 0 0 :, 0 0 
Da111 0 0 0 0 0 0 1 0 
We-’ 0 0 0 0 0 0 0 0 1 

The value of the determinant thus produced is 
I. Thus after making the change, the nine ele- 
ments together also form a basis. 

By means of the group theory, it can therefore 
be substantiated why and how the relations 
expressed by dimensionless variables may be 
obtained in engineering calculations. For ex- 
ample, why the well known relation 

Nu Nu 
St=---=- 

Re Pr Pe (14) 

is valid. This is a relation according to equation 
(5). Similarly, the other fracfional exponent 
power product relations may be disclosed and 
we may say how many dimensionless quantities 
are included into the relation and which are 
these quantities. The detailed substantiation of 
this is, however, too far reaching, and would 
require a separate lecture. 

In conclusion, a case should be submitted 
where the group theoretical treatment gave a 
new result. This is the determination of the 
criteria of scaling up. It is known that two systems 
having different dimensions are completely 
similar to one another if the homogeneous linear 
relation 

x’ = kx (15) 

is valid for their independent variables. These 
variables may be divided into four groups: 1. 
geometrical, 2. mechanical, 3. thermal, and 
4. component determining, i.e. chemical vari- 
ables. The variables of the latter three groups are 
covered by equations (7), (8) and (9). 

According to this classification, there exist 
geometrical, mechanical, thermal, and chemical 
similitudes. 

The geometrical similitude requires that the 
characteristic length (d) should be proportional 
in the model and the prototype: 

cr, = K do. (16) 

The mechanical similitude is realized when the 
values of the three (framed) basic variables 
shown in the last row of Table 2, connected 
with momentum conservation, are changed 
proportionally. The three basic variables di- 
minish to one, if the pressure drop (Ap) in the 
system can be neglected, since then the values 
A* and We become practically zero. The 
mechanical similitude then requires that the Re 
numbers in the two systems should be equal. If 
the material constants of both systems (a, /3, y, 
cP, 7, p, A, vi, Dj, AH) are identical, the identity 
of the Re number in the model and prototype 

CP~P = vnfdiv (17) 

is simplified to an equality. For systems without 
chemical reaction, the thermal and chemical 
similitude is included into the conditions (16) and 
(17). It does not mean therefore another re- 
striction between the variables of the model 
and the prototype, since the basic variables 
characteristic for the component and heat 
streams in columns 1 and 2 of Table 2 (Pe’, 
Pe, Nu’ and Nu) contain besides the material 
constants, the values of which are identified in 
the two systems, only the variables u and d. 
The situation is considerably more complicated 
if a chemical reaction also takes place in the 
system. Apart from the pressure drop, two more 
basic variables, Da1 and Dal11 appear. The 
thermal similitude is realized in this case only if 
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the values of Da111 are identical in the two 
systems. Disregarding the material constants, 
the two numbers Da111 are equal, if the equality 

(it& = (&)i (18) 
holds good. 

The condition of the chemical sitilitude is 
the equality of the two Da1 numbers in the two 
8ystems, which is given by equation 

($=f$. 
The four characteristic variables and the four 

restriction equations of the four similitudes are 
compiled in Table 3. 

Table 3 
-- 

Similitude Characteristic Restricting 
variable equation 

Geometrical 

Mechanical 

d 

V 

dp = Kdw 

wdp = v.wddu 

Thermal 

Chemical 

AT 

r 

_-- F 

The similitude has therefore no degree of 
freedom, since there are four variables and four 
equations. This means that if we want to produce 
a system similar to a given system, none of the 
variables may be selected freely, but all the 
variables of the original system must be trans- 
formed according to relation (15), i.e. corre- 
sponding to exact prescriptions. 

On the basis of Damkdhler’s original work [7], 
a statement has been spread in the scientific 

literature, viz. that at scaling up the criterion of 
complete similitude is the identity of the four 
Da numbers and that of the Re numbers in the 
two systems [lo]. As a result of the group theory 
investigations, this opinion must be corrected, 
and favourably, too, since fewer criteria have 
to be taken into account. It is correct to say that 
the criteria of complete similitude between two 
systems will be according to (16), (17), (18) and 
(1% 

The proportionality of one characteristic 
dimension, the identity of the Re number, the 
identity of the Da1 number, and the identity of 
the Da111 number. As it has been disclosed, only 
the Dal and Da111 numbers together belong to 
one basic system, the numbers Da11 and DaIV 
can only be written instead of the former 
numbers into the similitude condition, but not 
together with the Da1 and Da111 numbers. 

In the opinion of the author, this new systema- 
tization by group theory renders the correlations 
between dimensionless quantities simpler and 
clearer. 

REFERENCES 
1. R. FLEISCHMANN, 2. Phys. 129, 377 (1951). 
2. L. FUCHS, Abelian Groups. Pergamon Press, London 

(1960); A. G. KUROS, Grappentheorie. Akademie Ver- 
lag, Berlin (1953). 

3. P. BENEDEK and A. LAsz~6, VeszprPmi Vegyipari 
Egyetem Kiizlemenyei 5, 197-263 (1961). 

4. E. R. GILLILAND and C. E. REED, Industr. Engng 
Chem. 34, 551 (1942). 

5. A. SPEISER, Die Theorie der Gruppen, p. 31. Springer- 
Verlag, Berlin (1923). 

6. L. H. LANGHAAR, Dimensional Analysis and Theory of 
Models. John Wiley, New York (1951). 

7. G. DAMK~HLER, Z. Elektrochem. 42, 846 (1936). 
8. A. S. Fovsr, et al. Principles of Unit Operations, 

p. 123. John Wiley, New York (1959). 
9. D. W. VAN KRWELEN, BrennstChemie. 37, 65 

(1956). 
10. R. FLEMING, Scale-rrp in Practice. [Reinhold, New 

York (1958). 

R&u&-On sait que les grandeurs physiques forment au sens de I’algebre un groupe abelien libre infini. 
On montre dans cet article que les quantites sans dimensions d’un systeme don& forme un groupe 
abelien libre flni. 11 s’ensuit que tout Clement du groupe peut $tre obtenu sous la forme dun produit de 
puissances entieres, les elements de ce produit de puissances sont appeles elements de base. Une nouvelle 
systematisation logique des quantites sans dimensions par la theorie des groupes est possible. 

Les r&hats principaux de cette systematisation sont les suivants. 

lo Le nombre d’tl&nents de base est le meme que celui des degres de liberte. 

2” On a elimine tout processus arbitraire de determination des quantitts de base sans dimensions et on 
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a dtterminken accord g des instructions exactes la question suivante: combien y a-t-i1 de c&&es de 
base et que peuvent-ils &e? 

3” I1 est possible d’expliquer les relations entre les quanUCs sans dimensions. Par exemple, il peut &tre 
determine combien de quantitts sans dimensions sont en puissance dans les relations et quelles sont 
ces quantites. 

On a don& des exemples de d&termination de criteres de similitude. On a disc& les Cquations de 
base du gCnie chimique. 

Zusammenfassung-Es ist bekannt, dass physikalische Grassen im algebraischen Sinn eine tmendlich, 
freie Abelsche Gruppe bilden. In der Albeit wird gezeigt, dass die dimensionslosen Zahlen fiir ein 
gegebenes System eine freie Abelsche Gruppe crgeben. Daraus folgt, dass jedes Element der Gruppe 
als Potenzprodukt mit ganzzahligen Exponenten erhalten werden kann. Die Glieder dieser Potenz- 
produkte werden Grundelemente genannt. Eine neue logische Systematisienmg der dimensionslosen 
Zahlen wurde durch die Gruppentheorie ermiiglicht. 
Die Hauptergebnisse dieser Systematisierung sind folgende: 

1. Die Zahl der Grundelemente ist identisch mit den Freiheitsgraden. 

2. Jedes willkiirliche Vorgehen bei der Bestimmung der dimensionslosen Grundzahlen wird ausgeschal- 
tet, da die Fragen, welche und wieviele Grundkriterien vorhanden sind, nach genauen Anweisungen 
beantwortet werden kiinnen. 

3. Es ist mijglich, die Beziehungen zwischen den dimensionslosen Zahlen zu erkl&ren, da bestimmt 
werden kann, welche und wieviele dimensionslose Zahlen von der Beziehung eingeschlossen werden. 

Reispiele zur Bestimmung von Massstabsvergr&serungen sind angegeben. Die Gnmdgleichungen des 
Chimie-Ingenieurwesens werden diskutiert. 

11HHoTaq5cJi-KaK 1mnecTn0, (pI13WzeClille nezWmHb1 anre6palrqecrrw oBpa3ymoT GecKonesHyro 
cno60~uy1o a6eneBy rpynny. B IIaCTOnLI&efi CTaTbe nOKa3aH0, ‘ITO 6e3epa3MepIlbIe BeJIuqIiKbI 

~aIIHOit CllCTeMbI 06paaywT KOHe9HyW CBO6OAHyW a6eneBy rpynny. kl3 3TOrO @aKTa BbITeKaeT, 

‘IT0 ~1w6ofi 3.YIeMeHT naHHO$i rpynnbI MOFKHO IIOJIyQlTb B Bilge npOIl3Be~eHllH CTeneHefi ApyrMx 

3JIeMeHTOB c UenbIMkl noKa3aTenfnfIl. COMHOH(HTeJIH, BXOARmlie B 3TH CTeneHHbIe npOkl3Be- 

neIIIfr1, IikI3bIBaWTCH 6a3nCHbIMM NIeMeIITaMH. Ha OCHOBe TeOpHH rpynn L303MOH(Ha HOBalI 

j~OrI~~le~~ia~ cI~cTeMaT~3a~nfl 6espa3MepHbIx Bezn’ImI. 

M3 3TOii CIICTeMaTH3aI~IlIl BbITeKaWT CJIeAyWLQHe OCHORIIbIe peny.7bTaTb-I : 

1. Y1w2170 Aaancm,Ix 3jIeMenToB conrraA,aeT c ~1lcz10~ cTeneIrei4 cBoGoabI. 

2. Kaltoe-:mBo npoLt3BoJIbnoe onpenenenne 6aamHbIx BeJIM411H IlCKJIwYaeTCH, TaK KaK 

pernemle noupoca 0 Toni ? IiaKme KpIITeplILI HH.~RWTCR 6a3IlcrrbI~rl Fl ClEOJIbKO PlX, HbIIlOJIIIfIeTCfI 

110 TO’IHMM IlpanllJIaM 
3. ~0:3aoitcI1o 06~bncIreIlut: C~OTII~LII~II~~~ Melt;;ry Ae:lpasueprIbI~l~l Ile:InqmIaklu, a Il~letIIlo : 

~OiKno Onpe~e~II%Tb, lialille II CIiOjIbKO 6e3pa3MepHbIX BeJ?IiYHII BKnWYaeTCn I3 $aIIHOe CO- 

OTHOIII~HIIe. 

IIpI~no;~n~~n IrpmiepM Ilpe~cTasneann KpaTepHeB gpyr yepea Apyra. 06cyHcnawTcn 

OClIOUHbIe ypaBHeHLlR XIi%lPiYeCKOfi TeXHOJIOrIfM. 


